
Learning-Based* Frequency
Estimation in Data Streams

Chen-Yu Hsu Piotr Indyk Dina Katabi Ali Vakilian

1 2 3 4 5 6 7 8 9 10

MIT
*A.k.a. Automated / Data-Driven

(+Anders Aamand)

Data Streams
• A data stream is a (massive) sequence of data

– Too large to store (on disk, memory, cache, etc.)
• Single pass over the data: i1, i2,…,in
• Bounded storage (typically na or logc n)

• Many developments, esp. since the 90s
– Clustering, quantiles, distinct elements, frequency

moments, frequency estimation,..

8 2 1 9 1 9 2 4 6 3 9 4 2 3 4 2 3 8 5 2 5 6 5 8 6 3 2 9 1

42

Frequency Estimation Problem
• Data stream S: a sequence of items

from U
– E.g., S=8, 1, 7, 4, 6, 4, 10, 4, 4, 6, 8,

7, 5, 4, 2, 5, 6, 3, 9, 2
• Goal: at the end of the stream,

given item ! ∈ U, output an
estimation #$% of the frequency $% in S

• Applications in
• Network Measurements
• Comp bio (e.g., counting kmers, as

in Paul Medvedev’s talk on Wed)
• Machine Learning
• …

• Easy to do using linear space
• Sub-linear space ?

1 2 3 4 5 6 7 8 9 10

Count-Min
[Cormode-Muthukrishan’04]; cf. [Estan-Varghese’02]

• Basic algorithm:
– Prepare a random hash function h:

U→{1..w}
– Maintain an array C=[C1,…Cw] such

that
Cj=∑i: h(i)=j !"

(if you see element i, increment Ch(i))
– To estimate !" return

#!" = Ch(i)

• “Counting” Bloom filters [Fan et al’00]
– CM never underestimates (assuming !"

non-negative)

• Count-Sketch [Charikar et al’02]
– Arrows have signs, so errors cancel

out

C1 ……..…. Cw

!"

#!"

Count-Min ctd.
• Error guarantees (per each !"):

– E[|$!" - !" |]
= ∑l≠i Pr[h(l)=h(i)] !% ≤ 1/w ||!||1

• Actual algorithm:
– Maintain d vectors C1…Cd and

functions h1…hd

– Estimator:
&!" = mint Ct

ht(i)

• Analysis:
Pr[| &!" -!"| ≥ 2/w ||!||1] ≤ 1/2d

!"

(How) can we improve this by

learning?

• What is the “structure” in the data that we could

adapt to ?

• There is lots of information in the id of the stream

elements:

– For word data, it is known that frequency tends to be

inversely proportional to the word length rank

– For network data, some IP addresses (or IP domains)

are more popular than others

– …

• If we could learn these patterns, then (hopefully) we

could use them to improve algorithms

– E.g., try to avoid collisions with/between heavy items

Learned
Oracle

Stream
element

Heavy

Not
Heavy

Unique
Bucket

Sketching Alg
(e.g. CM)

Learning-Based Frequency Estimation
[Hsu-Indyk-Katabi-Vakilian, ICLR’19]

• Inspired by Learned Bloom filters
(Kraska et al., 2018)

• Consider “aggregate” error function

!
"∈$

%" ⋅ | (%" − %"|

• Use past data to train an ML
classifier to detect “heavy” elements
– “Algorithm configuration”

• Treat heavy elements differently
• Cost model: unique bucket costs 2

memory words
• Algorithm inherits worst case

guarantees from the sketching
algorithm

Experiments
• Data sets:

– Network traffic from CAIDA data set
• A backbone link of a Tier1 ISP between

Chicago and Seattle in 2016
• One hour of traffic; 30 million packets per

minute
• Used the first 7 minutes for training
• Remaining minutes for validation/testing

– AOL query log dataset:
• 21 million search queries collected from

650 thousand users over 90 days
• Used first 5 days for training
• Remaining minutes for validation/testing

• Oracle: Recurrent Neural Network
– CAIDA: 64 units
– AOL: 256 units

Results
Internet Traffic Estimation (20th minute) Search Query Estimation (50th day)

• Table lookup: oracle stores heavy hitters from the training set
• Learning augmented (Nnet): our algorithm
• Ideal: error with a perfect oracle
• Space amortized over multiple minutes (CAIDA) or days

(AOL)

Theoretical Results

U: universe of the items
n: number of items with non-zero frequency
k: number of hash tables
w=B/k: number of buckets per hash table

• Assume Zipfian Distribution (!" ∝ 1/&)
• Count-Min algorithm

Method Expected Err

CountMin (k>1 rows) Θ()* +,- +,(
.-
/))

Learned CountMin
(perfect oracle) Θ(+,

1(-//)
*)

üLearned CM improves
upon CM when B is
close to n

A. Aamand

üLearned CM is
asymptotically optimal

Why ML Oracle Helps ?

• Simple setting: Count-Min with one hash
function (i.e., k=1)
– Standard Count-Min expected error:

![#
$∈&

'$ ⋅ | *'$ − '$|] ≈#
$∈&

1
/ ⋅

1
0#$∈&

1
/ ≈ 123 2 /0

– Learned Count-Min with perfect oracle:
• Identify heaviest B/2 elements and store

separately

#
$∈&5[6/3]

1
/ ⋅

1
0/2 #

$∈&5[6/3]

1
/ ≈ 123 2/0 /0

Optimality of Learned Count-
Min

Theorem: If n/B >e4.2, then the estimation
error of any hash function that maps a set of
n items following Zipfian distribution to
B buckets is Ω(#$

%(&/()
*)

Observation: For min-of-counts estimator,
single hash function is optimal.

Conclusions

• ML helps improve the performance of streaming
algorithms

• Some theoretical understanding/bounds, although:
– Bounds for Count-Min (k>1) not tight
– Count-sketch ?

• Other sketching/streaming problems?
– Learned Locality-Sensitive Hashing
(with Y. Dong, I. Razenshteyn, T. Wagner)
– Learned matrix sketching for low-rank approximation
(with Y. Yuan, A. Vakilian)
– …

Conclusions ctd

• A pretty general approach to algorithm design
– Along the lines of divide-and-conquer, dynamic

programming etc

• There are pros and cons
– Pros: better performance
– Cons: (re-)training time, update time, different

guarantees

• Teaching a class on this topic (with C.
Daskalakis)
https://stellar.mit.edu/S/course/6/sp19/6.890/materials.html

• Insights into “classical” algorithms

