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Data Streams

A data stream is a (massive) sequence of data
— Too large to store (on disk, memory, cache, etc.)

Single pass over the data: i, i»,...,i,
Bounded storage (typically n*or log® n)
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Many developments, esp. since the 90s

— Clustering, quantiles, distinct elements, frequency
moments, frequency estimation,..



Frequency Estimation Problem

Data stream S: a sequence of items
from U

- E.g9.,5S=8,1,7,4,6,4,10,4, 4,6, 8, I:I
7,5,4,2,5,6,3,9,2 O [
1 2 3

Goal: at the end of the stream,
given item i € U, output an
estimation f; of the frequency f; in S
Applications in

* Network Measurements

« Comp bio (e.g., counting kmers, as
in Paul Medvedev’s talk on Wed)

* Machine Learning

Easy to do using linear space
Sub-linear space ?

JLITET

4 10



Count-Min

[Cormode-Muthukrishan’04]; cf. [Estan-Varghese'02]

* Basic algorithm:
— Prepare a random hash function h:

U—{1..w}
— Maintain an array C=[C,,...C,,] such fi
that /
Cj=Zi: niy= fi .
(if you see element i, increment C,; ) fi
— To estimate f; return O Cw
fi = Ch(i)

* “Counting” Bloom filters [Fan et al’00]
— CM never underestimates (assuming f;
non-negative)
* Count-Sketch [Charikar et al'02]

— Arrows have signs, so errors cancel
out




Count-Min ctd.

* Error guarantees (per each f;):

~Ell fi- fill

= Y Prin()=h()] fi < 1w [I£1l; W/
* Actual algorithm:

— Maintain d vectors C'...C9 and
functions h,...hy

— Estimator:
fi = min; Ctyyy
* Analysis:
Pri|f; -fil = 2/w [If]l4] s 1/2¢




(How) can we improve this by
learning?

« What is the “structure” in the data that we could
adapt to ?

 There is lots of information in the id of the stream
elements:

— For word data, it is known that frequency tends to be
iInversely proportional to the word length rank

— For network data, some IP addresses (or IP domains)
are more popular than others

* |f we could learn these patterns, then (hopefully) we
could use them to improve algorithms

— E.g., try to avoid collisions with/between heavy items



Learning-Based Frequency Estimation
[Hsu-Indyk-Katabi-Vakilian, ICLR19]

Inspired by Learned Bloom filters
(Kraska et al., 2018)

Consider “aggregate” error function

HM Sketching Alg
_ Heavy (e.g. CM)
Zfl . lfl B fll Stream
= I :{) Learned
element Oracle
Use past data to train an ML Unique
clas:‘smer_to detec_t hegv;i elements Heavy Bucket
— “Algorithm configuration

Treat heavy elements differently

Cost model: unique bucket costs 2
memory words

Algorithm inherits worst case
guarantees from the sketching
algorithm




Experiments

Data sets:

— Network traffic from CAIDA data set

* A backbone link of a Tier1 ISP between
Chicago and Seattle in 2016

« One hour of traffic; 30 million packets per
minute

« Used the first 7 minutes for training
« Remaining minutes for validation/testing
— AOL query log dataset:

« 21 million search queries collected from
650 thousand users over 90 days

« Used first 5 days for training
« Remaining minutes for validation/testing

Oracle: Recurrent Neural Network

— CAIDA: 64 units
— AOL: 256 units
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« Table lookup: oracle stores heavy hitters from the training set
« Learning augmented (Nnet): our algorithm
 |deal: error with a perfect oracle

. (S;AI?SE? amortized over multiple minutes (CAIDA) or days




Theoretical Results

» Assume Zipfian Distribution (f; o 1/i)

« Count-Min algorithm

/ A. Aamand

Method Expected Err
k kn
CountMin (k>1 rows) G)(E Inn ln(?))
Learned CountMin In?(n/B)
(perfect oracle) o B )

U: universe of the items

n: number of items with non-zero frequency
k: number of hash tables

w=B/k: number of buckets per hash table

v'Learned CM improves
upon CM when B is
close ton

v'Learned CM is
asymptotically optimal



Why ML Oracle Helps ?

« Simple setting: Count-Min with one hash
function (i.e., k=1)
— Standard Count-Min expected error:

ELY firlfi—fill = ) = (%2%>zzn2(n> /B

€U €U €U
— Learned Count-Min with perfect oracle:
* |dentify heaviest B/2 elements and store

separately
1 1 1
- = — | = In? B) /B
| 2 i (B/z, 2 i) n(n/B)/
leU—|B/2] leEU—|B/2]



Optimality of Learned Count-
Min
Theorem: If n/B >e*2, then the estimation

error of any hash function that maps a set of
n items following Zipfian distribution to

2
B buckets is Q (2 B))

Observation: For mm-of—counts estimator,
single hash function is optimal.




Conclusions

* ML helps improve the performance of streaming
algorithms

« Some theoretical understanding/bounds, although:

—Count=sketch—?

» Other sketching/streaming problems?
— Learned Locality-Sensitive Hashing
(with Y. Dong, |. Razenshteyn, T. Wagner)

— Learned matrix sketching for low-rank approximation
(with Y. Yuan, A. Vakilian)



Conclusions ctd

A pretty general approach to algorithm design

— Along the lines of divide-and-conquer, dynamic
programming etc

There are pros and cons

— Pros: better performance

— Cons: (re-)training time, update time, different
guarantees

Teaching a class on this topic (with C.

Daskalakis)
https://stellar.mit.edu/S/course/6/sp19/6.890/materials.html

Insights into “classical” algorithms



